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ABSTRACT

The subject of this paper is the theoretical analysis of the
electronic energy W(R) of two interacting atoms in powers of the
interatomic distance R . A new approach is presented based on
the Hellmanﬁ—Feynman theorem for the electronic force dW/dR,
which is written as a sum of integrals over legendre components of
the electron demsity expressed in elliptic coordinates. Analysis
of the first two components yields the formula previously obtained
by Bingel for the coefficient W, of R2 , but a new formula for

2

W3 which replaces that found by Bingelvusing perturbation theory.
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INTRODUCTICN

The total potential energy of two atoms A and B at a fixed

distance R apart may be written
ER) = WR) + 23[R )

where W 1is the electronic energy and Za’ Z, are the charges on

b
the nuclei. At extremely short range the interaction is dominated
by nuclear repulsion. As R increases, the change in electronic

energy with distance begins to play a role, and to describe this

effect it is natural to express W as a power series in R :

WR) = B, & REwW, - Rw, + YW .. @

In this equation W(e) = Eo is the energy of the united atom with
nuclear charge 7 ='2hx+’;55 , and the coefficients WZ’ W3, etc.,
are properties of the united atom which may be investigated

theoretically. Since W approaches a finite limit, W(eo ) , the
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sum of the energies o eparated ‘atoms, such a series inevitably
has only a very short range of validity. 1In fact, it is not possible
to obtain the coefficients W2, etc., directly from atomic beam

scattering measurements, as these very small distances are inaccessible

with present techniques. At the shortest range accessible at present




the repulsion can be fairly well represented by a simple exponential
term C exp(- K R). In order to bridge the gap between the short
range exponential behavior and the very short range interaction
described by equations (1) and (2), Buckinghaml therefore proposed

the form

ER) = ?f% PCR) 2xp (-xR) (3)

where p(R) = 1 + le + szZ + e is a polynomial in R .
I1f the exponent X is given, and some of the coefficients EO, Wz,
W3, etc., are known from united atom properties, then equation (3)
can be used to replace the constant C, and semi-empirically to
extend the range of the simple exponential form;

The subject of this paper is the quantum mechanical theory of
equation (2). Buckingham1 pointed out that the first-order
coefficient W1 always vanishes exactly, even for many-electron
heteronuclear molecules. Bingel2 obtained general expressions for
the coefficients W2 and W3 , relating them to simple properties
of the united atom. However, in attempting to develop the theory
fur ther, Steiner3 and I discovered an inconsistency in Bingel's

treatment of W and found that the corresponding formula for W4

3 5
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diverged. These conclusions were confirmed by Levine. Fur thermore,

Steiner and 15 and Levine6 obtained the exact W3 and W4 (finite)

for the one-electron case, and Duparc and Buckingham7’8 obtained




approximate values of W2 and W3 for two, three and four-electron
systems. In all cases Bingel's formula for W3 was clearly wrong.
The further development of the theory of the united atom
expansion (2) therefore hinges on the coefficient W3 . It can be
shown that the perturbation treatment used by Bingel is incapable of

yielding the form of W, in the general case of many-electron atoms.

3
The existence of an R3 term in W , and the stumbling block for
the theory, is due to the non-analytic behaviour of the electron
density at the nuclei of atoms and molecules. Although the existence
of cusps at the nuclei is well known, the consequence of the
coalescence of two cusps as R—->0 have been over looked.

A new approach is therefore needed which can adequately handle
the mathematical singularities involved. The object of this paper
is to describe an approach which enables the generél form of W

3

to be obtained.

HEtLMANN-FEYNMAN THEOREM FOR ELECTRONIC FORCE

According to the Hellmann-Feynman theorem19 the force attracting

nuclei A and B together due to the electroms is



where eQ;iﬁ) is the exact electron density in the molecular system

AB, and r Ty are the distances of the integration point ¢ from

b
A, B . The precise form of the force operator in the integrand of
(4) depends upon the electronic coordinates held fixed during the
differentiation,and in particular on the coordinate origin; the value
of dW/dR 1is, of course, independent of the choice. It is very
convenient, for a reason which will become apparent shortly, to

take the origin to be the center of nuclear charge C; that is,

on the line AB at a distance Ra = Z'bR/Z from atom A and

Qb = Ehkﬁ/i- from atom B , as illustrated in Figure 1. The

electronic force (4) then becomes

o

aw - 2.2, (u’-‘ﬁ: ,,_Cﬂ@b) P(m«)dr, (5)
AR z va ke
where the angles B, 795 are defined in Figure 1.
It is shown in the next section that the behavior of the
electron density P in the vicinity of the nuclei can be very
simply described by using confocal elliptic coordinates '§)r7

defined by

I= (ari)/R , = (/R (6)

It is therefore convenientT to regard P as a function of
T The electron density for a linear molecule in a spectroscopic state
is independent of the azimuthal angle




and R : 9 = e (E,ﬂl', Q) . In terms of elliptic coordinates

the electronic force (5) becomes

N o |
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where

(3G - | ((=31)(E+7)
po = 3[R (Lo

The advantage in choosing the center of nuclear charge as origin is
now apparent: -F(T,'\l) is an even function of M , so that only the
symmetric ’1 -component of P is required in the integrand.

The "force'" operator £ may 5e expanded in a series of even

Legendre polynomialsin the variable 'vL :
tEs = 22 L6)RED (9)
L:O

where

n o,

5 Y . (10)
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To obtain a general expression for the force component fl , write f

in the form
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The integrals required in (10)involve the Legendre functions of the

I
second kind, Q, , sincel

41
4
Q,Lm:gg I‘%“‘JM = ) Q1) (12)
= T

The resultt is fﬂ =0 for 4 odd, and for £ even

«&(Y) = (22-}—()[ §, + $ ezl Qr) =232 Q (;)] (13)
In particular

£,03)

(3F-D Q(X) —33

>

A Q%Y. (14)

.On substituting (9) into equation (7) it becomes

00

%’{ = Z—"‘;" xR 7 (4ha) f{’-%(r),oumﬁﬁfv (15)
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1- Equation (13) for ﬁl could be further reduced by eliminating the
factors § by means of the common recurrence relation for Legendre
functions of beth kinds. However, the main interest in this paper
is in the first few components, and the occurrence of Q functions

of negative degree (s inconvenient; for instance £LQu, =1
for 4 =




where Pg_k are the legendre ﬂ-components of () defined by
1
P 5iR) = (2+h) g PEARIT, ) dag . (16)
-\
In order to obtain general expressions for the coefficients W2, W3,
etc., in the united atom expansion (2), it is next necessary to

investigate the behaviour of the molecular demnsity components,

?zk(gia) , for small values of R .

CUSP BEHAVIOUR OF ELECTRON DENSITY

The crux of the problem of obtaining W3 is to describe
correctly the singularities 1in P as R=70. The behaviour of the
electron density as R becomes small and finally zero is illustrated
in Figures 2. These figures may be regarded gs perspective sketches
of three-dimensional surfaces in which PCS;"'[")R) is plotted
vertically over a x“{ -plane through the mecleculsr axis. The
change on going from (a) —> (c) can be described best in the
language of mountaineering: for ordinary values of R (Figure a)
the mountain landscape congists of two pinnacles A and B ,
separated by a col; when R has decreased to a very small value
(Figure b) the peaks are now higher and joined by a sharp argte;
finally when R 1is zero (Figure ¢) the separate peaks A and B

have coalesced to form a conical grand pic at C.

The critical feature for the evaluation of W3 is the line



singularity between A and B for very small (actually
infinitesimal) R . To describe this feature by means of spherical
polar coordinates W,e with origin C , as Bingel's approach attempts
to do, requires an infinite series  of Legendre polynomial in cos © .
This is also true for spherical polar coordinates V;)Ga origin A,
and Vb)eb origin B. On the other hand, the behaviour is as easily
described in terms of the elliptic coordinates E' and ﬂl , as an
atomic cusp is described by the radial coordinate Y

It is shown in the appendix that the zero ”l -component of the
electron density in a diatomic molecule satisfies the following cusp

or boundary condition:

<bP° _ . by
<§f - = —K?_fo(l,ﬁ) + O(R*) (17)

Equation (17) is the obvious generalization of the cusp condition

for the electron density PbA(xl) of the united atomlz’13

of
)
(£ = — 2% pplo) (18)
VR )
v Y=0
to which it reduces in the limit R-*0 ; this follows from the

. 6 .
Levine's™ successful perturbation treatment of H + required
just such infinite series, which he heroically mafiaged to re-sum.
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limiting form‘ief‘?w . Furthermore:r if Po (T) is the S-component

of ?UA(ﬁ) , then through terms in R

PO(E',R) X P:A(Zr/z)) (19)

and in general
{)u(Y) R) = Pag (RY/2) | (20)

ELLIPTIC FORCE OPERATOR COMPCNENTS

Before dW/dR can be investigated as a function of R , it is
necessary to discover the behaviour of the force components, ‘E(LE)e
They do not appear to have been discussed previously, although the
use of the force operator in elliptic coordinator is quite natural,
and is well known.14

The following results are readily cbtained from the equations
(13) and (14), by using the elementary properties11 of the QJ_CE)-
The zero and second components cannot always be conveniently fitted

in to the general formulae, and are therefore quoted separately.

T The important result(l?) does not follow immediately from
equation (17), but requires in addition the ccndition

('Bf’o((',@/ég)ﬁ_w = (BP\JA/}Y‘)(':O >

which holds for the one-electron case, and is assumed to hold-
in general. A $imilar assumption is implied in equation (20).



Small E : _(11("3) ~ "«Qoa(f —l) . (Oxﬂl l)

Large 3 go(s) ~ E/i5T? 4 037 |

£~ —2/T - 235> #0370

0
Integral: g\ ({»o Y =

§|~F,_d§ Ol-k'\R{%zS [oau\m‘*&m‘u\l(r ]

e
W€ (2240)(2+2)
T = — (L£0,2)
Y*ﬁd Ae0A-2)R+3) ] !

The first few components are plotted against }. in Figure 3.

(21)
(225
(23)
(24)
(25)
(26)

(27)
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The points to be noticed are: (a) all the -ﬁ diverge logarithmically

to + 00 as § —>1; (b) all the ‘FQ , except ,F,_ , behave

-3
asymptotically like ¥ or a higher power; (c) all the -Fz R

except ’FZ s have finite integrals over (1, o0 ).
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EXPANSION OF ELECTRONIC FORCE

It is now possible to return to equation (15) for the
electronic force, dW/dR, and investigate (s behaviour for small R .
In the present paper the analysis will be confined to the first two
powers of R in dW/dR . Then it follows from the results of the
last two sections that the terms in (15) with k 2> 2 can be

neglected. To show this, consider the ‘k(‘f‘- term when R is small:

e o
§ TPy (3iR)4T = { qﬁlk(s)fﬁ (R3/2) 4% |
! )

= 2 Si}u(z\-m) Pcrrda (28)
R A

According to Equation (24) -f—?_k(‘g) ~ —Hu{"s‘—lk where Alk

is a constant. Therefore

2%k-2 & ua
{-2k
(28) —> -— (—f—_) Alkg{)zk(") v dor. (29)
o
i Ve ) behaves like {‘&k for

™ [ I S R £AanN o ce o o2a . Lo 1.
111e .LIlL(:ng..L LIl (£7) 15 LIl wveLaustc T’lk\.‘
small ¥ and decays exponentially for large v, Thus the term for
k = 2 1is of order R:Z , and its contribution to dWw/dR is of
3 . .
order R~ , which we are neglecting.
Attention can therefore be confined to the first two terms

in equation (15),
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In the first integral, P°(§>Q) can be replaced by P° (R3/2)

when R 1is small according to equation (19). This function will

change only very slowly with §

-3
and goes rapidly to zero like T

, starting with a finite value at

By contrast, ¥°(Y) is infinite (but integrable) at¥ =1

It is therefore appropriate

to expand the density as followsJ

A

\Y
Po(5;0) & Po'(R3A) = Pual0) + £RT (3Ffe) e 1OD

——

© vzo

When equation (31) is substituted into the first integral of (30),

and the united atom cusp condition (18) is employed, the result -is

(<) ©o [»

g&cS)eo()-,a;&’s = ()Uk(o)fﬁa dY  — R2 fyale) KI fod¥ 4 .0,
\ | ‘ 1

-
—

L?)f\m_(o') — Ji_ez-()mco) R (32)

The second integral in (30) requires different treatment,

because the integral of {; diverges . It can be handled by the

technique used above for the terms 4e =2 -

T This procedure yields the first two powers of R in the
expansion of the first term of (30), but the series is

asymptotic only, and a different technique is required to
carry the analysis further.

12
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Now by equation (23)

Hence

%;Cl(w/«) ~ -2

%T&J‘S){L{x,«)dz ~

=

oo

% &&cz\r/ﬂ) Pz (Y dr

/.

(33)

/w —-32/6T3 +— .

(34)

2§ p*r s ~ ote?)

Rsz

Ry

13

e
-2 Xb oot + 2 [ pReretde 4.,
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o9
~2 S 0 a4+ O (eY)
M)

vn-
since P;_ff} is of order rz for small r .

(35)

Equations (32) and (35) may now be substituted into (30) to

obtain

o0

| fi’“(r)r”‘lﬂ.

[

O3 .

_ —2;212:\—?%(0) Kz-

(36)
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By differentiating equation (2),

%% = 2RW, + R w, + ..

)

and therefore by comparison

. Zatfax WAL
R [ R PR
2
Woy = — ZB 35 Pple) (38)

where the field gradient term in W2 has been re-written as a

three-dimensicnal integral.

The expression for W, is identical with that cbtained

2
.. - , 2 P , 2,15
originally by Bingel”™. However, for W3 Bingel obtained
T
. WAk 2 (39)
W3 (Brgd )= = a2 (-;: S Pl

The error in Bingel's perturbation treatment, which gave the

entirely reasonable impression that he had obtained the complete
formula for w3 s was deep and unsuspected. It will not be discussed
fully here, but it suffices to say that the perturbation expansion
itself appears tc be valid. The unusual feature is the behaviour

of the perturbaticn energies as functjons of R . From
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the pcint of view of the present paper, Bingel's result can be easily
derived and the error i3 then clear to see. The recipes for
cbtaining Bingel's resuit (39), and the correct result (38), from
equation (5) for the electronic force are as follows, Let

Qm(ﬁ) = ?UP.('; w3®) be the united atom electron density. Then

P'““(p-)@) —> fupf(p'w;e) leads to W2 and W3 (Bingel), (40)

PML(ﬁ',R) —> Pm((ﬁlz,fbl) leads to w, and W, {correct) . 4l)
The difference is that (41) describes ccrrectly the non-analytic
behaviour of P as R —> 0 , whereas (40) only describes it for
R = 0.
It should be added that equation (38) agrees with the exact W3

6
obtained for the ground state of the cne-electron systems’ and

also for the first few excited st:ates.16
CONCLUSION

It is hoped that in solving the problem of rhe coefficient WB
the bottleneck to the further analysis of the electronic energy
expansion has been remcved. The present paper shows clearly that

the perturbation treatment based cn the united atom,which appears

so natural, is not likely to be a fruitful means of obtaining terms
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in the expansion (2) beyond that in R2

Whether an expansion of W(R) in powers of R can be extended
into the range of values at present accessible experimentally is
doubtful. In any case, it has recently been shown that W(R) is
not in fact analytic at R = 0 in thé one-electron case, since a
term R510g R occurs.17’6 Such a term will certainly appear also
in the many-electron case. However, the analysis of W(R) in the
vicinity of the united atom is needed to provide a basis for the
theoretical discussion of the short range behaviour. One is
reminded of the fundamental theorem in the theory of functions,
that the behaviour of a function in an analytic domain is determined
by its singularities outside that domain. In the light of this
remark the singularity in W(R) at R = 0 , mentioned above, is

intriguing.
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APPENDIX
MOLECULAR CUSP CONDITIONS IN ELLIPTIC COORDINATES

The starting point in deriving (17) is the non-relativistic
Schrgdinger equation for the N electrons in the field of the
fixed nuclei A and B . The wave function may be regarded as a
function of the elliptic coordinates E,"},? for each electron, and
the internuclear distance R: Q = \P (Yn“lngsl} ~"",I~,“1N, ¢'J) R).
Attention is focussed on one electron, say the ith, and the

Schrodinger equation written in the form (atomic units)

z %S 185 ')g’\iﬂ [(‘ ‘lf) 1 r [Y_:‘_( e Lo

SR (7 SRS
FOREI-RAW IS + 2 (-1~ 2_%)¢
¢ [a J*L GJ VBJ'
+(ZZ5-w)g =0, (A0
2y Y
where A = Za - Zb' The wave function is now expanded in surface

harmonics in Y, ?‘;

imi/2

E (Yoo, 2he.) = ZZ G5-0) B e E, (1eR);

fs0o m=-R
(A.2)

" -
the factor involving (3‘; ") is necessary in order that Q can be

an eigenfunction of (A.1), and has merely been exhibited explicitly
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for convenience. By substituting (A.2) into (A.1l), the large term
in curly brackets becomes
wif2

1
{C‘& = Zz (Y,;l—\) P‘:(n(.)g\'m?s‘. [(SCZ"‘).&—-%’“‘ 1
e ‘ ¥ 3

A
F 20T #iwt) gf“‘ + Y_M’L».Q(QH)]‘PD_M] . (A.3)

Equation (A.1l) is now integrated over all values of n;’ ¢£, to pick
out the zero Legendre component. By using equations (12),and
rearranging,the result may be written

o

- 2 3 %o o 3_\;*
3; cmi(i—ﬂ — +27; )0 - k
E;E; ‘ CQIL BXC bff + (ez- 2k12 *1))g%u§°

- Qvut (YC) RA\%.L*(,O - "‘@Q?‘(D%@M‘"MC —W@QO) = O)
( Ak

{
where '11 is the part of the electronic Hamiltonian left over in
equation (A.1l) after removal of the one-electron terms for electron ¢.
( .
Consider now the limit I;—?ﬂd The term involving ‘ﬂ4£ is finite,
at least provided that 337* | for any other electron J , and no
two electrons are at the same point in space. However, the term

involving the Legendre functions diverges logarithmically, since

Lt Tun] = Q= 48y (G5) =+ @9




Since the Schrodinger equation must be valid for all f,_‘ s 1t

follows that

19

2 2 __*-v, + (02 -2elaec)E,, (5=) — RA (n-a)} =0,
{ BY‘- s‘—' Z&ID %'0

(A-6)

A similar relation may be deduced involving the derivatives of the
odd components with respect to 3" , but is not required here.

This infinite sum is not attractive b)l comparison with the

simple cusp conditions for the zero (symmetric) cos 6,- omad Ccse'b‘

components of the molecular wave function at nuclei A and B 5

namely18
A g
AR ' DL
— ) = “—% @ (L:A’) ___0,0 _- —
dVac )C’A el ) <2m,‘- )E=B 21,‘1'{0)00 8). (4.7)

Nevertheless it is condition (A.6) that is needed and not conditiong
(A.7).

Consider the form of (A.6) for small R . 1In the limit as
R =>0 the molecular wave function \£=‘EM°L becomes the united
atom wave function \PUA , and the L "l"—component of \PMOL
becomes the )ALth cos §; -component of ‘:E‘UA s \E,:c . Sin chA ie
an analytic function of I it follows that ngri;etc) is
of order rf in L Hence ‘Ezo(l-f‘-; etc) is of order (Qf;/?.)x

when R 1is small. By analyzing (A.6) in this manner it can be

seen that




* %,
2 = + RZE (5=)
33, - o
=l
It is now straightforward to repeat the

in the atomic case, and derive the cusp

electron density component \DO(E:, R) .

20

O(RY. (4.8)

i

analysis vsed by Steiner13

condition (17) for the
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Figure 3.

Graph of first four elliptic force operator components ‘F&Cg) (-l g, 2, ‘+ (a)
defined by~ equation (13), pr’t‘t‘é‘d“ agaﬁ?f""g"'?range 1, e8Y).




